Hilbert Space Representations of Probability Distributions

Arthur Gretton

joint work with Karsten Borgwardt, Kenji Fukumizu, Malte Rasch, Bernhard Schölkopf, Alex Smola, Le Song, Choon Hui Teo

Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Overview

biologische kybernetik

- The two sample problem: are samples $\left\{x_{1}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ generated from the same distribution?
- Kernel independence testing: given a sample of m pairs $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$, are the random variables x and y independent?

Kernels, feature maps

A very short introduction to kernels

biologische kybernetik

- Hilbert space of functions $f \in \mathcal{F}$ from \mathcal{X} to \mathbb{R}
- RKHS: evaluation operator $\delta_{x}: x \rightarrow \mathbb{R}$ continuous

A very short introduction to kernels

LOGISCHE KYber

- Hilbert space of functions $f \in \mathcal{F}$ from \mathcal{X} to \mathbb{R}
- RKHS: evaluation operator $\delta_{x}: x \rightarrow \mathbb{R}$ continuous
- Riesz: Unique representer of evaluation $k(x, \cdot) \in \mathcal{F}$:

$$
f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{F}}
$$

$-k(x, \cdot)$ feature map
$-k: \mathcal{X} \mapsto \mathbb{R}$ is kernel function

A very short introduction to kernels

biologische kybernetik

- Hilbert space of functions $f \in \mathcal{F}$ from \mathcal{X} to \mathbb{R}
- RKHS: evaluation operator $\delta_{x}: x \rightarrow \mathbb{R}$ continuous
- Riesz: Unique representer of evaluation $k(x, \cdot) \in \mathcal{F}$:

$$
f(x)=\langle f, k(x, \cdot)\rangle_{\mathcal{F}}
$$

- $k(x, \cdot)$ feature map
$-k: \mathcal{X} \mapsto \mathbb{R}$ is kernel function
- Inner product between two feature maps:

$$
\left\langle k\left(x_{1}, \cdot\right), k\left(x_{2}, \cdot\right)\right\rangle_{\mathcal{F}}=k\left(x_{1}, x_{2}\right)
$$

A Kernel Method for the Two Sample Problem

The two-sample problem

ologische kybernetik

- Given:
- m samples $\boldsymbol{x}:=\left\{x_{1}, \ldots, x_{m}\right\}$ drawn i.i.d. from \mathbf{P}
- samples \boldsymbol{y} drawn from \mathbf{Q}
- Determine: Are \mathbf{P} and \mathbf{Q} different?

The two-sample problem

- Given:
- m samples $\boldsymbol{x}:=\left\{x_{1}, \ldots, x_{m}\right\}$ drawn i.i.d. from \mathbf{P}
- samples \boldsymbol{y} drawn from \mathbf{Q}
- Determine: Are \mathbf{P} and \mathbf{Q} different?
- Applications:
- Microarray data aggregation
- Speaker/author identification
- Schema matching

The two-sample problem

- Given:
- m samples $\boldsymbol{x}:=\left\{x_{1}, \ldots, x_{m}\right\}$ drawn i.i.d. from \mathbf{P}
- samples \boldsymbol{y} drawn from \mathbf{Q}
- Determine: Are \mathbf{P} and \mathbf{Q} different?
- Applications:
- Microarray data aggregation
- Speaker/author identification
- Schema matching
- Where is our test useful?
- High dimensionality
- Low sample size
- Structured data (strings and graphs): currently the only method
- How to detect $\mathbf{P} \neq \mathbf{Q}$?
- Distance between means in space of features
- Function revealing differences in distributions
- Same thing: the MMD [Gretton et al., 2007, Borgwardt et al., 2006]
- How to detect $\mathbf{P} \neq \mathbf{Q}$?
- Distance between means in space of features
- Function revealing differences in distributions
- Same thing: the MMD [Gretton et al., 2007, Borgwardt et al., 2006]
- Hypothesis test using MMD
- Asymptotic distribution of MMD
- Large deviation bounds
- How to detect $\mathbf{P} \neq \mathbf{Q}$?
- Distance between means in space of features
- Function revealing differences in distributions
- Same thing: the MMD [Gretton et al., 2007, Borgwardt et al., 2006]
- Hypothesis test using MMD
- Asymptotic distribution of MMD
- Large deviation bounds
- Experiments

Mean discrepancy (1)

- Oische kybern
- Simple example: 2 Gaussians with different means
- Answer: t-test

Mean discrepancy (2)

BIOLOGISCHE K

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form x^{2}

Mean discrepancy (2)

-

- Two Gaussians with same means, different variance
- Idea: look at difference in means of features of the RVs
- In Gaussian case: second order features of form x^{2}

Mean discrepancy (3)

- Gaussian and Laplace distributions
- Same mean and same variance
- Difference in means using higher order features

BLOLOGISCHE KYBERNETIK

- Idea: avoid density estimation when testing $\mathbf{P} \neq \mathbf{Q}$
[Fortet and Mourier, 1953]

$$
D(\mathbf{P}, \mathbf{Q} ; F):=\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right] .
$$

- Idea: avoid density estimation when testing $\mathbf{P} \neq \mathbf{Q}$
[Fortet and Mourier, 1953]

$$
D(\mathbf{P}, \mathbf{Q} ; F):=\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right] .
$$

- $D(\mathbf{P}, \mathbf{Q} ; F)=0$ iff $\mathbf{P}=\mathbf{Q}$, when $F=$ bounded continuous functions [Dudey, 2002]
- Idea: avoid density estimation when testing $\mathbf{P} \neq \mathbf{Q}$
[Fortet and Mourier, 1953]

$$
D(\mathbf{P}, \mathbf{Q} ; F):=\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right] .
$$

- $D(\mathbf{P}, \mathbf{Q} ; F)=0$ iff $\mathbf{P}=\mathbf{Q}$, when $F=$ bounded continuous functions [Dudey, 2002]
- $D(\mathbf{P}, \mathbf{Q} ; F)=0$ iff $\mathbf{P}=\mathbf{Q}$ when $F=$ the unit ball in a universal RKHS \mathcal{F} [via Steinwart, 2001]
- Idea: avoid density estimation when testing $\mathbf{P} \neq \mathbf{Q}$
[Fortet and Mourier, 1953]

$$
D(\mathbf{P}, \mathbf{Q} ; F):=\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right] .
$$

- $D(\mathbf{P}, \mathbf{Q} ; F)=0$ iff $\mathbf{P}=\mathbf{Q}$, when $F=$ bounded continuous functions [Dudley, 2002]
- $D(\mathbf{P}, \mathbf{Q} ; F)=0$ iff $\mathbf{P}=\mathbf{Q}$ when $F=$ the unit ball in a universal RKHS \mathcal{F} [via Steinwart, 2001]
- Examples: Gaussian, Laplace [see also Fukumizu et al., 2004]
- Gauss vs Laplace revisited

max-Planck-gesellschaft
BIOLOGISCHE KYBERNETIK
- The (kernel) MMD:
$\operatorname{MMD}(\mathbf{P}, \mathbf{Q} ; F)$

$$
=\left(\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right]\right)^{2}
$$

- The (kernel) MMD:
$\operatorname{MMD}(\mathbf{P}, \mathbf{Q} ; F)$
$=\left(\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right]\right)^{2}$
using

$$
\begin{aligned}
\mathbf{E}_{\mathbf{P}}(f(\mathrm{x})) & =\mathbf{E}_{\mathbf{P}}\left[\langle\phi(\mathrm{x}), f\rangle_{\mathcal{F}}\right] \\
& =:\left\langle\mu_{x}, f\right\rangle_{\mathcal{F}}
\end{aligned}
$$

- The (kernel) MMD:
$\operatorname{MMD}(\mathbf{P}, \mathbf{Q} ; F)$

$$
\begin{aligned}
& =\left(\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right]\right)^{2} \\
& =\left(\sup _{f \in F}\left\langle f, \mu_{x}-\mu_{y}\right\rangle_{\mathcal{F}}\right)^{2}
\end{aligned}
$$

using

$$
\begin{aligned}
\mathbf{E}_{\mathbf{P}}(f(\mathrm{x})) & =\mathbf{E}_{\mathbf{P}}\left[\langle\phi(\mathrm{x}), f\rangle_{\mathcal{F}}\right] \\
& =:\left\langle\mu_{x}, f\right\rangle_{\mathcal{F}}
\end{aligned}
$$

max-Planck-gesellschaft
biologische kybernetik

- The (kernel) MMD:
$\operatorname{MMD}(\mathbf{P}, \mathbf{Q} ; F)$

$$
\begin{aligned}
& =\left(\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right]\right)^{2} \\
& =\left(\sup _{f \in F}\left\langle f, \mu_{x}-\mu_{y}\right\rangle_{\mathcal{F}}\right)^{2} \\
& =\left\|\mu_{x}-\mu_{y}\right\|_{\mathcal{F}}^{2}
\end{aligned}
$$

using

$$
\|\mu\|_{\mathcal{F}}=\sup _{f \in F}\langle f, \mu\rangle_{\mathcal{F}}
$$

- The (kernel) MMD:
$\operatorname{MMD}(\mathbf{P}, \mathbf{Q} ; F)$

$$
\begin{aligned}
& =\left(\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right]\right)^{2} \\
& =\left(\sup _{f \in F}\left\langle f, \mu_{x}-\mu_{y}\right\rangle_{\mathcal{F}}\right)^{2} \\
& =\left\|\mu_{x}-\mu_{y}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{x}-\mu_{y}, \mu_{x}-\mu_{y}\right\rangle_{\mathcal{F}} \\
& =\mathbf{E}_{\mathbf{P}, \mathbf{P}^{\prime}} k\left(\mathrm{x}, \mathrm{x}^{\prime}\right)+\mathbf{E}_{\mathbf{Q}, \mathbf{Q}^{\prime}} k\left(\mathrm{y}, \mathrm{y}^{\prime}\right)-2 \mathbf{E}_{\mathbf{P}, \mathbf{Q}} k(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

- x^{\prime} is a R.V. independent of x with distribution P
- y^{\prime} is a R.V. independent of y with distribution \mathbf{Q}.
- The (kernel) MMD:
$\operatorname{MMD}(\mathbf{P}, \mathbf{Q} ; F)$

$$
\begin{aligned}
& =\left(\sup _{f \in F}\left[\mathbf{E}_{\mathbf{P}} f(\mathrm{x})-\mathbf{E}_{\mathbf{Q}} f(\mathrm{y})\right]\right)^{2} \\
& =\left(\sup _{f \in F}\left\langle f, \mu_{x}-\mu_{y}\right\rangle_{\mathcal{F}}\right)^{2} \\
& =\left\|\mu_{x}-\mu_{y}\right\|_{\mathcal{F}}^{2} \\
& =\left\langle\mu_{x}-\mu_{y}, \mu_{x}-\mu_{y}\right\rangle_{\mathcal{F}} \\
& =\mathbf{E}_{\mathbf{P}, \mathbf{P}^{\prime}} k\left(\mathrm{x}, \mathrm{x}^{\prime}\right)+\mathbf{E}_{\mathbf{Q}, \mathbf{Q}^{\prime}} k\left(\mathrm{y}, \mathrm{y}^{\prime}\right)-2 \mathbf{E}_{\mathbf{P}, \mathbf{Q}} k(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

- x^{\prime} is a R.V. independent of x with distribution

P

- y^{\prime} is a R.V. independent of y with distribution \mathbf{Q}.
- Kernel between measures [Hein and Bousquet, 2005]

$$
\mathfrak{K}(\mathbf{P}, \mathbf{Q})=\mathbf{E}_{\mathbf{P}, \mathbf{Q}} k(\mathrm{x}, \mathrm{y})
$$

Statistical test using MMD (1)

holocische kiberntik

- Two hypotheses:
- H_{0} : null hypothesis $(\mathbf{P}=\mathbf{Q})$
- H_{1} : alternative hypothesis $(\mathbf{P} \neq \mathbf{Q})$

Statistical test using MMD (1)

bogische kybernetik

- Two hypotheses:
- H_{0} : null hypothesis ($\mathbf{P}=\mathbf{Q}$)
- H_{1} : alternative hypothesis $(\mathbf{P} \neq \mathbf{Q})$
- Observe samples $\boldsymbol{x}:=\left\{x_{1}, \ldots, x_{m}\right\}$ from \mathbf{P} and \boldsymbol{y} from \mathbf{Q}
- If empirical $\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)$ is
- "far from zero": reject H_{0}
- "close to zero": accept H_{0}

Statistical test using MMD (1)

- Two hypotheses:
- H_{0} : null hypothesis ($\mathbf{P}=\mathbf{Q}$)
- H_{1} : alternative hypothesis $(\mathbf{P} \neq \mathbf{Q})$
- Observe samples $\boldsymbol{x}:=\left\{x_{1}, \ldots, x_{m}\right\}$ from \mathbf{P} and \boldsymbol{y} from \mathbf{Q}
- If empirical $\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)$ is
- "far from zero": reject H_{0}
- "close to zero": accept H_{0}
- How good is a test?
- Type I error: We reject H_{0} although it is true
- Type II error: We accept H_{0} although it is false

Statistical test using MMD (1)

bologische Kybernetik

- Two hypotheses:
- H_{0} : null hypothesis $(\mathbf{P}=\mathbf{Q})$
- H_{1} : alternative hypothesis $(\mathbf{P} \neq \mathbf{Q})$
- Observe samples $\boldsymbol{x}:=\left\{x_{1}, \ldots, x_{m}\right\}$ from \mathbf{P} and \boldsymbol{y} from \mathbf{Q}
- If empirical $\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)$ is
- "far from zero": reject H_{0}
- "close to zero": accept H_{0}
- How good is a test?
- Type I error: We reject H_{0} although it is true
- Type II error: We accept H_{0} although it is false
- Good test has a low type II error for user-defined Type I error

Statistical test using MMD (2)

BIologische kybernet

- "far from zero" vs "close to zero" - threshold?

Statistical test using MMD (2)

- "far from zero" vs "close to zero" - threshold?
- One answer: asymptotic distribution of $\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)$

Statistical test using MMD (2)

- "far from zero" vs "close to zero" - threshold?
- One answer: asymptotic distribution of $\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)$
- An unbiased empirical estimate (quadratic cost):
$\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)=\frac{1}{m(m-1)} \sum_{i \neq j} \underbrace{k\left(x_{i}, x_{j}\right)-k\left(x_{i}, y_{j}\right)-k\left(y_{i}, x_{j}\right)+k\left(y_{i}, y_{j}\right)}_{h\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right)}$

Statistical test using MMD (2)

olocische kybernetik

- "far from zero" vs "close to zero" - threshold?
- One answer: asymptotic distribution of $\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)$
- An unbiased empirical estimate (quadratic cost):
$\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)=\frac{1}{m(m-1)} \sum_{i \neq j} \underbrace{k\left(x_{i}, x_{j}\right)-k\left(x_{i}, y_{j}\right)-k\left(y_{i}, x_{j}\right)+k\left(y_{i}, y_{j}\right)}_{h\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right)}$
- When $\mathbf{P} \neq \mathbf{Q}$, asymptotically normal [Hoeffding, 1948, Serfing, 1980]

Statistical test using MMD (2)

- "far from zero" vs "close to zero" - threshold?
- One answer: asymptotic distribution of $\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)$
- An unbiased empirical estimate (quadratic cost):
$\operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F)=\frac{1}{m(m-1)} \sum_{i \neq j} \underbrace{k\left(x_{i}, x_{j}\right)-k\left(x_{i}, y_{j}\right)-k\left(y_{i}, x_{j}\right)+k\left(y_{i}, y_{j}\right)}_{h\left(\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)\right)}$
- When $\mathbf{P} \neq \mathbf{Q}$, asymptotically normal [Hoeffding, 1948, Serfling, 1980]
- Expression for the variance: $z_{i}:=\left(x_{i}, y_{i}\right)$

$$
\sigma_{u}^{2}=\frac{2^{2}}{m}\left(\mathbf{E}_{\mathbf{z}}\left[\left(\mathbf{E}_{\mathbf{z}^{\prime}} h\left(\mathbf{z}, \mathbf{z}^{\prime}\right)\right)^{2}\right]-\left[\mathbf{E}_{z, \mathbf{z}^{\prime}}\left(h\left(\mathbf{z}, \mathbf{z}^{\prime}\right)\right)\right]^{2}\right)+O\left(m^{-2}\right)
$$

Statistical test using MMD (3)

- Example: laplace distributions with different variance

MMD distribution and Gaussian fit under H1

Two Laplace distributions with different variances

Statistical test using MMD (4)

haX-PLANCK-GESELLSCHAF

- When $\mathbf{P}=\mathbf{Q}$, U-statistic degenerate: $\mathbf{E}_{\mathbf{z}^{\prime}}\left[h\left(z, z^{\prime}\right)\right]=0$ [Anderson et al., 1994]
- Distribution is

$$
m \operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F) \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

- where

$$
\begin{aligned}
& -z_{l} \sim \mathcal{N}(0,2) \text { i.i.d } \\
& -\int_{\mathcal{X}} \underbrace{\tilde{k}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d \mathbf{P}_{x}(x)=\lambda_{i} \psi_{i}\left(x^{\prime}\right)
\end{aligned}
$$

Statistical test using MMD (4)

- When $\mathbf{P}=\mathbf{Q}$, U-statistic degenerate: $\mathbf{E}_{\mathbf{z}^{\prime}}\left[h\left(z, z^{\prime}\right)\right]=0$ [Anderson et al., 1994]
- Distribution is

$$
m \operatorname{MMD}(\boldsymbol{x}, \boldsymbol{y} ; F) \sim \sum_{l=1}^{\infty} \lambda_{l}\left[z_{l}^{2}-2\right]
$$

- where

$$
\begin{aligned}
& -z_{l} \sim \mathcal{N}(0,2) \text { i.i.d } \\
& -\int_{\mathcal{X}} \underbrace{\tilde{k}\left(x, x^{\prime}\right)}_{\text {centred }} \psi_{i}(x) d \mathbf{P}_{x}(x)=\lambda_{i} \psi_{i}\left(x^{\prime}\right)
\end{aligned}
$$

Statistical test using MMD (5)

- gels
- Given $\mathbf{P}=\mathbf{Q}$, want threshold T such that $\mathbf{P}(\mathrm{MMD}>T) \leq 0.05$

Statistical test using MMD (5)

biologische kybernetik

- Given $\mathbf{P}=\mathbf{Q}$, want threshold T such that $\mathbf{P}(\operatorname{MMD}>T) \leq 0.05$
- Bootstrap for empirical CDF [Arcones and Giné, 1992]
- Pearson curves by matching first four moments [Johnson et al., 1994]
- Large deviation bounds [Hoeffding, 1963, McDiarmid, 1969]
- Other...

Statistical test using MMD (5)

biologische kyberne

- Given $\mathbf{P}=\mathbf{Q}$, want threshold T such that $\mathbf{P}(\mathrm{MMD}>T) \leq 0.05$
- Bootstrap for empirical CDF [Arcones and Giné, 1992]
- Pearson curves by matching first four moments [Johnson et al., 1994]
- Large deviation bounds [Hoeffding, 1963, McDiarmid, 1969]
- Other...

Experiments

- Small sample size: Pearson more accurate than bootstrap
- Large sample size: bootstrap faster

Experiments

- Small sample size: Pearson more accurate than bootstrap
- Large sample size: bootstrap faster
- Cancer subtype ($m=25,2118$ dimensions):
- For Pearson, Type I 3.5\%, Type II 0%
- For bootstrap, Type I 0.9%, Type II 0%

Experiments

- Small sample size: Pearson more accurate than bootstrap
- Large sample size: bootstrap faster
- Cancer subtype ($m=25,2118$ dimensions):
- For Pearson, Type I 3.5\%, Type II 0%
- For bootstrap, Type I 0.9\%, Type II 0\%
- Neural spikes ($m=1000,100$ dimensions):
- For Pearson, Type I 4.8\%, Type II 3.4%
- For bootstrap, Type I 5.4\%, Type II 3.3\%

Experiments

- Small sample size: Pearson more accurate than bootstrap
- Large sample size: bootstrap faster
- Cancer subtype ($m=25,2118$ dimensions):
- For Pearson, Type I 3.5\%, Type II 0\%
- For bootstrap, Type I 0.9\%, Type II 0%
- Neural spikes ($m=1000,100$ dimensions):
- For Pearson, Type I 4.8\%, Type II 3.4\%
- For bootstrap, Type I 5.4\%, Type II 3.3\%
- Further experiments: comparison with t-test, Friedman-Rafsky tests [Friedman and Rafsky, 1979], Biau-Györfi test [Biau and Gyorfi, 2005], and Hall-Tajvidi test [Hall and Tajvidi, 2002].
- The MMD: distance between means in feature spaces
- When feature spaces universal RKHSs, MMD $=0$ iff $\mathbf{P}=\mathbf{Q}$
- Statistical test of whether $\mathbf{P} \neq \mathbf{Q}$ using asymptotic distribution:
- Pearson approximation for low sample size
- Bootstrap for large sample size
- Useful in high dimensions and for structured data

Dependence Detection with Kernels

Kernel dependence measures

- Independence testing
- Given: m samples $\boldsymbol{z}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ from \mathbf{P}
- Determine: Does $\mathbf{P}=\mathbf{P}_{\mathrm{x}} \mathbf{P}_{\mathrm{y}}$?

Kernel dependence measures

- Independence testing
- Given: m samples $\boldsymbol{z}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ from \mathbf{P}
- Determine: Does $\mathbf{P}=\mathbf{P}_{\mathrm{x}} \mathbf{P}_{\mathrm{y}}$?
- Kernel dependence measures
- Zero only at independence
- Take into account high order moments
- Make "sensible" assumptions about smoothness

Kernel dependence measures

- Independence testing
- Given: m samples $\boldsymbol{z}:=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ from \mathbf{P}
- Determine: Does $\mathbf{P}=\mathbf{P}_{\mathrm{x}} \mathbf{P}_{\mathrm{y}}$?
- Kernel dependence measures
- Zero only at independence
- Take into account high order moments
- Make "sensible" assumptions about smoothness
- Covariance operators in spaces of features
- Spectral norm (COCO) [Gretton et al., 2005c,d]
- Hilbert-Schmidt norm (HSIC) [Gretton et al., 2005a]

Function revealing dependence (1)

- Idea: avoid density estimation when testing $\mathbf{P}=\mathbf{P}_{x} \mathbf{P}_{y}$ [Rényi, 1959]

$$
\operatorname{COCO}(\mathbf{P} ; F, G):=\sup _{f \in F, g \in G}\left(\mathbf{E}_{\times, y}[f(\mathrm{x}) g(\mathrm{y})]-\mathbf{E}_{\mathrm{x}}[f(\mathrm{x})] \mathbf{E}_{\mathrm{y}}[g(\mathrm{y})]\right)
$$

Function revealing dependence (1)

- Idea: avoid density estimation when testing $\mathbf{P}=\mathbf{P}_{x} \mathbf{P}_{y}$ [Rényi, 1959]

$$
\operatorname{COCO}(\mathbf{P} ; F, G):=\sup _{f \in F, g \in G}\left(\mathbf{E}_{\times, y}[f(\mathrm{x}) g(\mathrm{y})]-\mathbf{E}_{\mathrm{x}}[f(\mathrm{x})] \mathbf{E}_{\mathrm{y}}[g(\mathrm{y})]\right)
$$

- $\operatorname{COCO}(\mathbf{P} ; F, G)=0$ iff \times, y independent, when F and G are respective unit balls in universal RKHSs \mathcal{F} and \mathcal{G} [via Steinwart, 2001]
- Examples: Gaussian, Laplace [see also Bach and Jordan, 2002]

Function revealing dependence (1)

- Idea: avoid density estimation when testing $\mathbf{P}=\mathbf{P}_{x} \mathbf{P}_{y}$ [Rényi, 1959]

$$
\operatorname{COCO}(\mathbf{P} ; F, G):=\sup _{f \in F, g \in G}\left(\mathbf{E}_{\times, \mathrm{y}}[f(\mathrm{x}) g(\mathrm{y})]-\mathbf{E}_{\mathrm{x}}[f(\mathrm{x})] \mathbf{E}_{\mathrm{y}}[g(\mathrm{y})]\right)
$$

- $\operatorname{COCO}(\mathbf{P} ; F, G)=0$ iff \times, y independent, when F and G are respective unit balls in universal RKHSs \mathcal{F} and \mathcal{G} [via Steinwart, 2001]
- Examples: Gaussian, Laplace [see also Bach and Jordan, 2002]

In geometric terms:

- Covariance operator: $C_{x y}: \mathcal{G} \rightarrow \mathcal{F}$ such that

$$
\left\langle f, C_{x y} g\right\rangle_{\mathcal{F}}=\mathbf{E}_{\mathrm{x}, \mathrm{y}}[f(\mathrm{x}) g(\mathrm{y})]-\mathbf{E}_{\mathrm{x}}[f(\mathrm{x})] \mathbf{E}_{\mathrm{y}}[g(\mathrm{y})]
$$

Function revealing dependence (1)

- Idea: avoid density estimation when testing $\mathbf{P}=\mathbf{P}_{x} \mathbf{P}_{y}$ [Rényi, 1959]

$$
\operatorname{COCO}(\mathbf{P} ; F, G):=\sup _{f \in F, g \in G}\left(\mathbf{E}_{\times, \mathrm{y}}[f(\mathrm{x}) g(\mathrm{y})]-\mathbf{E}_{\mathrm{x}}[f(\mathrm{x})] \mathbf{E}_{\mathrm{y}}[g(\mathrm{y})]\right)
$$

- $\operatorname{COCO}(\mathbf{P} ; F, G)=0$ iff \times, y independent, when F and G are respective unit balls in universal RKHSs \mathcal{F} and \mathcal{G} [via Steinwart, 2001]
- Examples: Gaussian, Laplace [see also Bach and Jordan, 2002]

In geometric terms:

- Covariance operator: $C_{x y}: \mathcal{G} \rightarrow \mathcal{F}$ such that

$$
\left\langle f, C_{x y} g\right\rangle_{\mathcal{F}}=\mathbf{E}_{\mathrm{x}, \mathrm{y}}[f(\mathrm{x}) g(\mathrm{y})]-\mathbf{E}_{\mathrm{x}}[f(\mathrm{x})] \mathbf{E}_{\mathrm{y}}[g(\mathrm{y})]
$$

- COCO is the spectral norm of $C_{x y}$ [Gretton et al., 2005c,d]:

$$
\operatorname{COCO}(\mathbf{P} ; F, G):=\left\|C_{x y}\right\|_{\mathrm{S}}
$$

Function revealing dependence (2)

ologische kybernet

- Ring-shaped density, correlation approx. zero [example from Fukumizu, Bach, and Gretton, 2005]

Function revealing dependence (2)

biologische kybernetik

- Ring-shaped density, correlation approx. zero [example from Fukumizu, Bach, and Gretton, 2005]

Function revealing dependence (2)

- Ring-shaped density, correlation approx. zero [example from Fukumizu, Bach, and Gretton, 2005]

Function revealing dependence (3)

- Empirical $\operatorname{COCO}(\boldsymbol{z} ; F, G)$ largest eigenvalue of

$$
\left[\begin{array}{cc}
\mathbf{0} & \frac{1}{m} \widetilde{\mathbf{K}} \widetilde{\mathbf{L}} \\
\frac{1}{m} \widetilde{\mathbf{L}} \widetilde{\mathbf{K}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\gamma\left[\begin{array}{cc}
\widetilde{\mathbf{K}} & \mathbf{0} \\
\mathbf{0} & \widetilde{\mathbf{L}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right] .
$$

- $\widetilde{\mathbf{K}}$ and $\widetilde{\mathbf{L}}$ are matrices of inner products between centred observations in respective feature spaces:

$$
\widetilde{\mathbf{K}}=\mathbf{H K H} \quad \text { where } \quad \mathbf{H}=\mathbf{I}-\frac{1}{m} \mathbf{1 1}^{\top}
$$

and $k\left(x_{i}, x_{j}\right)=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle_{\mathcal{F}}, \quad l\left(y_{i}, y_{j}\right)=\left\langle\psi\left(y_{i}\right), \psi\left(y_{j}\right)\right\rangle_{\mathcal{G}}$

Function revealing dependence (3)

- Empirical $\operatorname{COCO}(\boldsymbol{z} ; F, G)$ largest eigenvalue of

$$
\left[\begin{array}{cc}
\mathbf{0} & \frac{1}{m} \widetilde{\mathbf{K}} \widetilde{\mathbf{L}} \\
\frac{1}{m} \widetilde{\mathbf{L}} \widetilde{\mathbf{K}} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\gamma\left[\begin{array}{cc}
\widetilde{\mathbf{K}} & \mathbf{0} \\
\mathbf{0} & \widetilde{\mathbf{L}}
\end{array}\right]\left[\begin{array}{l}
\mathbf{c} \\
\mathbf{d}
\end{array}\right] .
$$

- $\widetilde{\mathbf{K}}$ and $\widetilde{\mathbf{L}}$ are matrices of inner products between centred observations in respective feature spaces:

$$
\widetilde{\mathbf{K}}=\mathbf{H K H} \quad \text { where } \quad \mathbf{H}=\mathbf{I}-\frac{1}{m} \mathbf{1 1}^{\top}
$$

and $k\left(x_{i}, x_{j}\right)=\left\langle\phi\left(x_{i}\right), \phi\left(x_{j}\right)\right\rangle_{\mathcal{F}}, \quad l\left(y_{i}, y_{j}\right)=\left\langle\psi\left(y_{i}\right), \psi\left(y_{j}\right)\right\rangle_{\mathcal{G}}$

- Witness function for x :

$$
f(x)=\sum_{i=1}^{m} c_{i}\left(k\left(x_{i}, x\right)-\frac{1}{m} \sum_{j=1}^{m} k\left(x_{j}, x\right)\right)
$$

Function revealing dependence (4)

- Can we do better?
- A second example with zero correlation

Function revealing dependence (4)

ologische kyber

- Can we do better?
- A second example with zero correlation

Function revealing dependence (4)

biologische kybernetik

- Can we do better?
- A second example with zero correlation

Hilbert-Schmidt Independence Criterion

biologische kybernetik

- Given $\gamma_{i}:=\operatorname{COCO}_{i}(\boldsymbol{z} ; F, G)$, define Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2005b]:

$$
\operatorname{HSIC}(\boldsymbol{z} ; F, G):=\sum_{i=1}^{m} \gamma_{i}^{2}
$$

Hilbert-Schmidt Independence Criterion

- Given $\gamma_{i}:=\operatorname{COCO}_{i}(\boldsymbol{z} ; F, G)$, define Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al., 2005b]:

$$
\operatorname{HSIC}(\boldsymbol{z} ; F, G):=\sum_{i=1}^{m} \gamma_{i}^{2}
$$

- In limit of infinite samples:

$$
\begin{aligned}
\operatorname{HSIC}(\mathbf{P} ; F, G):= & \left\|C_{x y}\right\|_{\mathrm{HS}}^{2} \\
= & \left\langle C_{x y}, C_{x y}\right\rangle_{\mathrm{HS}} \\
= & \mathbf{E}_{\mathrm{x}, \mathrm{x}^{\prime}, \mathrm{y}, \mathrm{y}^{\prime}}\left[k\left(\mathrm{x}, \mathrm{x}^{\prime}\right) l\left(\mathrm{y}, \mathrm{y}^{\prime}\right)\right]+\mathbf{E}_{\mathrm{x}, \mathrm{x}^{\prime}}\left[k\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right] \mathbf{E}_{\mathrm{y}, \mathrm{y}^{\prime}}\left[l\left(\mathrm{y}, \mathrm{y}^{\prime}\right)\right] \\
& \quad-2 \mathbf{E}_{\mathrm{x}, \mathrm{y}}\left[\mathbf{E}_{\mathrm{x}^{\prime}}\left[k\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right] \mathbf{E}_{\mathrm{y}^{\prime}}\left[l\left(\mathrm{y}, \mathrm{y}^{\prime}\right)\right]\right]
\end{aligned}
$$

- x^{\prime} an independent copy of x, y^{\prime} a copy of y

Link between HSIC and MMD (1)

biologische kybernetik

- Define the product space $\mathcal{F} \times \mathcal{G}$ with kernel

$$
\left\langle\Phi(x, y), \Phi\left(x^{\prime}, y^{\prime}\right)\right\rangle=\mathfrak{K}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)
$$

Link between HSIC and MMD (1)

- Define the product space $\mathcal{F} \times \mathcal{G}$ with kernel

$$
\left\langle\Phi(x, y), \Phi\left(x^{\prime}, y^{\prime}\right)\right\rangle=\mathfrak{K}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)
$$

- Define the mean elements

$$
\left\langle\mu_{x y}, \Phi(x, y)\right\rangle:=\mathbf{E}_{x^{\prime}, y^{\prime}}\left\langle\Phi\left(x^{\prime}, y^{\prime}\right), \Phi(x, y)\right\rangle=\mathbf{E}_{x^{\prime}, y^{\prime}} k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)
$$

and

$$
\left\langle\mu_{x \Perp y}, \Phi(x, y)\right\rangle:=\mathbf{E}_{x^{\prime}, y^{\prime \prime}}\left\langle\Phi\left(x^{\prime}, y^{\prime \prime}\right), \Phi(x, y)\right\rangle=\mathbf{E}_{x^{\prime}} k\left(x, x^{\prime}\right) \mathbf{E}_{y^{\prime}} l\left(y, y^{\prime}\right)
$$

Link between HSIC and MMD (1)

- Define the product space $\mathcal{F} \times \mathcal{G}$ with kernel

$$
\left\langle\Phi(x, y), \Phi\left(x^{\prime}, y^{\prime}\right)\right\rangle=\mathfrak{K}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)
$$

- Define the mean elements

$$
\left\langle\mu_{x y}, \Phi(x, y)\right\rangle:=\mathbf{E}_{x^{\prime}, y^{\prime}}\left\langle\Phi\left(x^{\prime}, y^{\prime}\right), \Phi(x, y)\right\rangle=\mathbf{E}_{x^{\prime}, y^{\prime}} k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)
$$

and

$$
\left\langle\mu_{x \Perp y}, \Phi(x, y)\right\rangle:=\mathbf{E}_{x^{\prime}, y^{\prime \prime}}\left\langle\Phi\left(x^{\prime}, y^{\prime \prime}\right), \Phi(x, y)\right\rangle=\mathbf{E}_{x^{\prime}} k\left(x, x^{\prime}\right) \mathbf{E}_{y^{\prime}} l\left(y, y^{\prime}\right)
$$

- The MMD between these two mean elements is

$$
\begin{aligned}
\operatorname{MMD}\left(\mathbf{P}, \mathbf{P}_{x} \mathbf{P}_{y}, F \times G\right) & =\left\|\mu_{x y}-\mu_{x \Perp y}\right\|_{\mathcal{F} \times \mathcal{G}}^{2} \\
& =\left\langle\mu_{x y}-\mu_{x \Perp y}, \mu_{x y}-\mu_{x \Perp y}\right\rangle \\
& =\operatorname{HSIC}(\mathbf{P}, F, G)
\end{aligned}
$$

Link between HSIC and MMD (2)

- Witness function for HSIC

Independence test: verifying ICA and ISA

- HSICp: null distribution via sampling
- HSICg: null distribution via moment matching
- Compare with contingency table test (PD) [Read and Cressie, 1988]

Rotation $\theta=\pi / 4$

Independence test: verifying ICA and ISA

- HSICp: null distribution via sampling
- HSICg: null distribution via moment matching
- Compare with contingency table test (PD) [Read and Cressie, 1988]

Independence test: verifying ICA and ISA

- HSICp: null distribution via sampling
- HSICg: null distribution via moment matching
- Compare with contingency table test (PD) [Read and Cressie, 1988]

Other applications of HSIC

\author{

- 0 (
}
- Feature selection [Song et al., 2007c,a]
- Clustering [Song et al., 2007b]

- COCO and HSIC: norms of covariance operator between feature spaces
- When feature spaces universal RKHSs, $\mathrm{COCO}=\mathrm{HSIC}=0$ iff $\mathbf{P}=\mathbf{P}_{\mathrm{x}} \mathbf{P}_{\mathrm{y}}$
- Statistical test possible using asymptotic distribution
- Independent component analysis
- high accuracy
- less sensitive to initialisation

Questions?

Bibliography

References

N. Anderson, P. Hall, and D. Titterington. Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates. Journal of Multivariate Analysis, 50:41-54, 1994.
M. Arcones and E. Giné. On the bootstrap of u and v statistics. The Annals of Statistics, 20(2):655-674, 1992.
F. R. Bach and M. I. Jordan. Kernel independent component analysis. J. Mach. Learn. Res., 3:1-48, 2002.
G. Biau and L. Gyorfi. On the asymptotic properties of a nonparametric l_{1}-test statistic of homogeneity. IEEE Transactions on Information Theory, 51(11):3965-3973, 2005.
K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf, and A. J. Smola. Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics, 22(14):e49-e57, 2006.
R. M. Dudley. Real analysis and probability. Cambridge University Press, Cambridge, UK, 2002.
R. Fortet and E. Mourier. Convergence de la réparation empirique vers la réparation théorique. Ann. Scient. École Norm. Sup., 70:266-285, 1953.
J. Friedman and L. Rafsky. Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample tests. The Annals of Statistics, 7(4):697-717, 1979.
K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. J. Mach. Learn. Res., 5:73-99, 2004.
K. Fukumizu, F. Bach, and A. Gretton. Consistency of kernel canonical correlation analysis. Technical Report

Hard-to-detect dependence (1)

biologische kybernetik

- COCO can be ≈ 0 for dependent RVs with highly non-smooth densities

Hard-to-detect dependence (1)

rolocishe kybernetik

- COCO can be ≈ 0 for dependent RVs with highly non-smooth densities
- Reason: norms in the denominator

$$
\operatorname{COCO}(\mathbf{P} ; F, G):=\sup _{f \in \mathcal{F}, g \in \mathcal{G}} \frac{\operatorname{cov}(f(\mathrm{x}), g(\mathrm{y}))}{\|\mathbf{f}\|_{\mathcal{F}}\|\mathbf{g}\|_{\mathcal{G}}}
$$

- RESULT: not detectable with finite sample size
- More formally: see Ingster [1989]

Hard-to-detect dependence (2)

biologische kybernetik

Rough density

Density takes the form:

Hard-to-detect dependence (3)

biologische kybernetik

- Example: sinusoids of increasing frequency

$$
\omega=1
$$

$$
\omega=2
$$

Choosing kernel size (1)

biologische kybernetik

- The RKHS norm of f is $\|f\|_{\mathcal{H}_{\mathcal{X}}}^{2}:=\sum_{i=1}^{\infty} \tilde{f}_{i}^{2}\left(\tilde{k}_{i}\right)^{-1}$.
- If kernel decays quickly, its spectrum decays slowly:
- then non-smooth functions have smaller RKHS norm
- Example: spectrum of two Gaussian kernels

Choosing kernel size (2)

- Could we just decrease kernel size?
- Yes, but only up to a point

